Note
Go to the end to download the full example code
P02 - Inversion of the Mandelbrot set
This example demonstrates a basic use of the class Generic_mapping
.
The following mapping is applied:
\[f(z) = \frac{1}{z}\]
Reference:
fractalshades.projection.Generic_mapping
import os
import typing
import numpy as np
import mpmath
from PyQt6 import QtGui
import numba
import fractalshades
import fractalshades as fs
import fractalshades.models as fsm
import fractalshades.gui as fsgui
import fractalshades.colors as fscolors
import fractalshades.projection
from fractalshades.postproc import (
Postproc_batch,
Continuous_iter_pp,
DEM_normal_pp,
Fieldlines_pp,
DEM_pp,
Raw_pp,
Attr_pp,
Attr_normal_pp,
Fractal_array
)
from fractalshades.colors.layers import (
Color_layer,
Bool_layer,
Normal_map_layer,
Grey_layer,
Disp_layer,
Virtual_layer,
Blinn_lighting,
Overlay_mode
)
x = 1.
y = 0.
dx = 8.
xy_ratio = 1.6
@numba.njit
def f(z):
# define the inversion function
return 1 / z
@numba.njit
def df(z):
# differential: used to correctly implement shading
return -1. / z ** 2
projection = fs.projection.Generic_mapping(f, df)
batch_params = {
"projection": projection
}
#------------------------------------------------------------------------------
# Parameters - user editable
#------------------------------------------------------------------------------
plot_kwargs = {
"fractal": None,
"calc_name": "std_zooming_calc",
"_1": "Zoom parameters",
"x": x,
"y": y,
"dx": dx,
"xy_ratio": xy_ratio,
"theta_deg": 0.0,
"nx": 2400,
"_2": "Calculation parameters",
"max_iter": 5000,
"M_divergence": 1000.0,
"epsilon_stationnary": 0.01,
"_3": "Newton parameters",
"compute_newton": True,
"max_order": 30000,
"max_newton": 20,
"eps_newton_cv": 1e-08,
"_4": "Plotting parameters: base field",
"base_layer": "continuous_iter",
"colormap": fs.colors.Fractal_colormap(
colors=[[0.67450982, 0.67450982, 0.67450982],
[0.67450982, 0.67450982, 0.67450982]],
kinds=['Lch'],
grad_npts=[3],
grad_funcs=['x'],
extent='repeat'
),
"cmap_func": fractalshades.numpy_utils.expr_parser.Numpy_expr(
variables=[
"x",
],
expr="np.log(x)",
),
"zmin": 0.0,
"zmax": 5.0,
"zshift": -1.0,
"mask_color": (
0.1,
0.1,
0.1,
1.0,
),
"_7": "Plotting parameters: Newton field",
"int_layer": "attractivity",
"colormap_int": fs.colors.Fractal_colormap(
colors=[[0. , 0. , 0. ],
[0.4823 , 0.8392 , 0.8549 ]],
kinds=['Lch'],
grad_npts=[8],
grad_funcs=['x**2'],
extent='mirror'
),
"cmap_func_int": fractalshades.numpy_utils.expr_parser.Numpy_expr(
variables=[
"x",
],
expr="x",
),
"zmin_int": 0.0,
"zmax_int": 1.0,
"_5": "Plotting parameters: shading",
"has_shading": True,
"shading_kind": "potential",
"lighting": fs.colors.layers.Blinn_lighting(
k_ambient=0.4,
color_ambient=[1., 1., 1.],
ls0={
'k_diffuse': 1.8,
'k_specular': 15.0,
'shininess': 500.0,
'polar_angle': 135.0,
'azimuth_angle': 20.0,
'color': [1. , 1. , 0.95],
'material_specular_color': None
},
),
"lighting_int": fs.colors.layers.Blinn_lighting(
k_ambient=0.4,
color_ambient=[1. , 1. , 1.],
ls0={
'k_diffuse': 1.8,
'k_specular': 15.0,
'shininess': 500.0,
'polar_angle': 135.0,
'azimuth_angle': 20.0,
'color': [1. , 1. , 0.95],
'material_specular_color': None
},
),
"max_slope": 60.0,
"_6": "Plotting parameters: field lines",
"has_fieldlines": False,
"fieldlines_func": fractalshades.numpy_utils.expr_parser.Numpy_expr(
variables=[
"x",
],
expr="x",
),
"fieldlines_kind": "overlay",
"fieldlines_zmin": -1.0,
"fieldlines_zmax": 1.0,
"backshift": 3,
"n_iter": 4,
"swirl": 0.0,
"damping_ratio": 0.8,
"twin_intensity": 0.1,
"_8": "High-quality rendering options",
"final_render": False,
"supersampling": "3x3",
"jitter": False,
"recovery_mode": False,
"_9": "Extra outputs",
"output_masks": False,
"output_normals": False,
"output_heightmaps": False,
"hmap_mask": 0.0,
"int_hmap_mask": 0.0,
"_10": "General settings",
"log_verbosity": "debug @ console + log",
"enable_multithreading": True,
"inspect_calc": False,
"no_newton": False,
"postproc_dtype": "float32",
"_1b": None,
"has_skew": False,
"skew_00": 1.0,
"skew_01": 0.0,
"skew_10": 0.0,
"skew_11": 1.0,
"calc_dzndc": False,
"interior_detect": True,
"dps": None,
}
#------------------------------------------------------------------------------
# Function - /!\ do not modify this section
#------------------------------------------------------------------------------
def plot(
fractal: fs.Fractal=None,
calc_name: str="std_zooming_calc",
_1: fs.gui.collapsible_separator="Zoom parameters",
x: float = 0.0,
y: float = 0.0,
dx: float = 10.0,
dps: int = None,
xy_ratio: float = 1.0,
theta_deg: float = 0.0,
nx: int = 600,
_1b: fs.gui.collapsible_separator = None,
has_skew: bool = False,
skew_00: float = 1.0,
skew_01: float = 0.0,
skew_10: float = 0.0,
skew_11: float = 1.0,
_2: fs.gui.collapsible_separator="Calculation parameters",
max_iter: int = 5000,
M_divergence: float = 1000.,
interior_detect: bool = True,
epsilon_stationnary: float = 0.001,
calc_dzndc: bool = False,
_3: fs.gui.collapsible_separator = "Newton parameters",
compute_newton: bool = True,
max_order: int = 1500,
max_newton: int = 20,
eps_newton_cv: float =1.e-8,
_4: fs.gui.collapsible_separator="Plotting parameters: base field",
base_layer: typing.Literal[
"continuous_iter",
"distance_estimation"
]="continuous_iter",
colormap: fs.colors.Fractal_colormap=(
fs.colors.cmap_register["classic"]
),
cmap_func: fs.numpy_utils.Numpy_expr = (
fs.numpy_utils.Numpy_expr("x", "np.log(x)")
),
zmin: float = 0.0,
zmax: float = 5.0,
zshift: float = -1.0,
mask_color: fs.colors.Color=(0.1, 0.1, 0.1, 1.0),
_7: fs.gui.collapsible_separator="Plotting parameters: Newton field",
int_layer: typing.Literal[
"attractivity", "order", "attr / order"
]="attractivity",
colormap_int: fs.colors.Fractal_colormap = (
fs.colors.cmap_register["classic"]
),
cmap_func_int: fs.numpy_utils.Numpy_expr = (
fs.numpy_utils.Numpy_expr("x", "x")
),
zmin_int: float = 0.0,
zmax_int: float = 1.0,
_5: fs.gui.collapsible_separator = "Plotting parameters: shading",
has_shading: bool = True,
shading_kind : typing.Literal["potential", "Milnor"] = "potential",
lighting: Blinn_lighting = (
fs.colors.lighting_register["glossy"]
),
lighting_int: Blinn_lighting = (
fs.colors.lighting_register["glossy"]
),
max_slope: float = 60.,
_6: fs.gui.collapsible_separator = "Plotting parameters: field lines",
has_fieldlines: bool = False,
fieldlines_func: fs.numpy_utils.Numpy_expr = (
fs.numpy_utils.Numpy_expr("x", "x")
),
fieldlines_kind: typing.Literal["overlay", "twin"] = "overlay",
fieldlines_zmin: float = -1.0,
fieldlines_zmax: float = 1.0,
backshift: int = 3,
n_iter: int = 4,
swirl: float = 0.,
damping_ratio: float = 0.8,
twin_intensity: float = 0.1,
_8: fs.gui.collapsible_separator="High-quality rendering options",
final_render: bool=False,
supersampling: fs.core.supersampling_type = "None",
jitter: bool = False,
recovery_mode: bool = False,
_9: fs.gui.collapsible_separator="Extra outputs",
output_masks: bool = False,
output_normals: bool = False,
output_heightmaps: bool = False,
hmap_mask: float = 0.,
int_hmap_mask: float = 0.,
_10: fs.gui.collapsible_separator="General settings",
log_verbosity: typing.Literal[fs.log.verbosity_enum
] = "debug @ console + log",
enable_multithreading: bool = True,
inspect_calc: bool = False,
no_newton: bool = False,
postproc_dtype: typing.Literal["float32", "float64"] = "float32",
batch_params={}
):
fs.settings.log_directory = os.path.join(fractal.directory, "log")
fs.set_log_handlers(verbosity=log_verbosity)
fs.settings.enable_multithreading = enable_multithreading
fs.settings.inspect_calc = inspect_calc
fs.settings.no_newton = no_newton
fs.settings.postproc_dtype = postproc_dtype
zoom_kwargs = {
"x": x,
"y": y,
"dx": dx,
"nx": nx,
"xy_ratio": xy_ratio,
"theta_deg": theta_deg,
"has_skew": has_skew,
"skew_00": skew_00,
"skew_01": skew_01,
"skew_10": skew_10,
"skew_11": skew_11,
"projection": batch_params.get(
"projection"# , fs.projection.Cartesian()
)
}
if fractal.implements_deepzoom:
zoom_kwargs["precision"] = dps
fractal.zoom(**zoom_kwargs)
calc_std_div_kw = {
"calc_name": calc_name,
"subset": None,
"max_iter": max_iter,
"M_divergence": M_divergence,
}
if fractal.implements_dzndc == "user":
calc_std_div_kw["calc_dzndc"] = calc_dzndc
if shading_kind == "Milnor":
calc_std_div_kw["calc_d2zndc2"] = True
if has_fieldlines:
calc_orbit = (backshift > 0)
calc_std_div_kw["calc_orbit"] = calc_orbit
calc_std_div_kw["backshift"] = backshift
if fractal.implements_interior_detection == "always":
calc_std_div_kw["epsilon_stationnary"] = epsilon_stationnary
elif fractal.implements_interior_detection == "user":
calc_std_div_kw["interior_detect"] = interior_detect
calc_std_div_kw["epsilon_stationnary"] = epsilon_stationnary
fractal.calc_std_div(**calc_std_div_kw)
# Run the calculation for the interior points - if wanted
if compute_newton:
interior = Fractal_array(
fractal, calc_name, "stop_reason", func= "x != 1"
)
fractal.newton_calc(
calc_name="interior",
subset=interior,
known_orders=None,
max_order=max_order,
max_newton=max_newton,
eps_newton_cv=eps_newton_cv,
)
pp = Postproc_batch(fractal, calc_name)
if base_layer == "continuous_iter":
pp.add_postproc(base_layer, Continuous_iter_pp())
if output_heightmaps:
pp.add_postproc("base_hmap", Continuous_iter_pp())
elif base_layer == "distance_estimation":
pp.add_postproc("continuous_iter", Continuous_iter_pp())
pp.add_postproc(base_layer, DEM_pp())
if output_heightmaps:
pp.add_postproc("base_hmap", DEM_pp())
if has_fieldlines:
pp.add_postproc(
"fieldlines",
Fieldlines_pp(n_iter, swirl, damping_ratio)
)
else:
fieldlines_kind = "None"
pp.add_postproc("interior", Raw_pp("stop_reason", func="x != 1"))
if compute_newton:
pp_int = Postproc_batch(fractal, "interior")
if int_layer == "attractivity":
pp_int.add_postproc(int_layer, Attr_pp())
if output_heightmaps:
pp_int.add_postproc("interior_hmap", Attr_pp())
elif int_layer == "order":
pp_int.add_postproc(int_layer, Raw_pp("order"))
if output_heightmaps:
pp_int.add_postproc("interior_hmap", Raw_pp("order"))
elif int_layer == "attr / order":
pp_int.add_postproc(int_layer, Attr_pp(scale_by_order=True))
if output_heightmaps:
pp_int.add_postproc(
"interior_hmap", Attr_pp(scale_by_order=True)
)
# Set of unknown points
pp_int.add_postproc(
"unknown", Raw_pp("stop_reason", func="x == 0")
)
pps = [pp, pp_int]
else:
pps = pp
if has_shading:
pp.add_postproc("DEM_map", DEM_normal_pp(kind=shading_kind))
if compute_newton:
pp_int.add_postproc("attr_map", Attr_normal_pp())
plotter = fs.Fractal_plotter(
pps,
final_render=final_render,
supersampling=supersampling,
jitter=jitter,
recovery_mode=recovery_mode
)
# The mask values & curves for heighmaps
r1 = min(hmap_mask, 0.)
r2 = max(hmap_mask, 1.)
dr = r2 - r1
hmap_curve = lambda x : (np.clip(x, 0., 1.) - r1) / dr
r1 = min(int_hmap_mask, 0.)
r2 = max(int_hmap_mask, 1.)
dr = r2 - r1
int_hmap_curve = lambda x : (np.clip(x, 0., 1.) - r1) / dr
# The layers
plotter.add_layer(Bool_layer("interior", output=output_masks))
if compute_newton:
plotter.add_layer(Bool_layer("unknown", output=output_masks))
if fieldlines_kind == "twin":
plotter.add_layer(Virtual_layer(
"fieldlines", func=fieldlines_func, output=False
))
elif fieldlines_kind == "overlay":
plotter.add_layer(Grey_layer(
"fieldlines", func=fieldlines_func,
probes_z=[fieldlines_zmin, fieldlines_zmax],
output=False
))
if has_shading:
plotter.add_layer(Normal_map_layer(
"DEM_map", max_slope=max_slope, output=output_normals
))
plotter["DEM_map"].set_mask(plotter["interior"])
if compute_newton:
plotter.add_layer(Normal_map_layer(
"attr_map", max_slope=90, output=output_normals
))
if base_layer != 'continuous_iter':
plotter.add_layer(
Virtual_layer("continuous_iter", func=None, output=False)
)
plotter.add_layer(Color_layer(
base_layer,
func=cmap_func,
colormap=colormap,
probes_z=[zmin + zshift, zmax + zshift],
output=True)
)
if output_heightmaps:
plotter.add_layer(Disp_layer(
"base_hmap",
func=cmap_func,
curve=hmap_curve,
probes_z=[zmin + zshift, zmax + zshift],
output=True
))
if compute_newton:
plotter.add_layer(Color_layer(
int_layer,
func=cmap_func_int,
colormap=colormap_int,
probes_z=[zmin_int, zmax_int],
output=False))
plotter[int_layer].set_mask(plotter["unknown"],
mask_color=mask_color)
if output_heightmaps:
plotter.add_layer(Disp_layer(
"interior_hmap",
func=cmap_func,
curve=int_hmap_curve,
probes_z=[zmin_int, zmax_int],
output=True
))
plotter["interior_hmap"].set_mask(
plotter["unknown"],
mask_color=(int_hmap_mask,)
)
if fieldlines_kind == "twin":
plotter[base_layer].set_twin_field(
plotter["fieldlines"], twin_intensity
)
elif fieldlines_kind == "overlay":
overlay_mode = Overlay_mode("tint_or_shade", pegtop=1.0)
plotter[base_layer].overlay(plotter["fieldlines"], overlay_mode)
if has_shading:
plotter[base_layer].shade(plotter["DEM_map"], lighting)
if compute_newton:
plotter[int_layer].shade(plotter["attr_map"], lighting_int)
plotter["attr_map"].set_mask(plotter["unknown"],
mask_color=(0., 0., 0., 0.))
if compute_newton:
# Overlay : alpha composite with "interior" layer ie, where it is not
# masked, we take the value of the "attr" layer
overlay_mode = Overlay_mode(
"alpha_composite",
alpha_mask=plotter["interior"],
inverse_mask=True
)
plotter[base_layer].overlay(plotter[int_layer], overlay_mode=overlay_mode)
else:
plotter[base_layer].set_mask(
plotter["interior"], mask_color=mask_color
)
if output_heightmaps:
plotter["base_hmap"].set_mask(
plotter["interior"], mask_color=(hmap_mask,)
)
plotter.plot()
if __name__ == "__main__":
# Some magic to get the directory for plotting: with a name that matches
# the file or a temporary dir if we are building the documentation
try:
realpath = os.path.realpath(__file__)
plot_dir = os.path.splitext(realpath)[0]
plot_kwargs["fractal"] = fs.models.mandelbrot_M2.Mandelbrot(
directory=plot_dir,
)
plot(**plot_kwargs, batch_params=batch_params)
except NameError:
import tempfile
with tempfile.TemporaryDirectory() as plot_dir:
plot_kwargs["fractal"] = fs.models.mandelbrot_M2.Mandelbrot(
directory=plot_dir
)
fs.utils.exec_no_output(
plot, **plot_kwargs, batch_params=batch_params
)
Total running time of the script: ( 0 minutes 8.471 seconds)